摘要:
为了改善Sigmoid函数变步长LMS算法(SVS-LMS)在高斯噪声和冲激噪声干扰下的性能,首先将以瞬间误差功率为Sigmoid函数自变量控制步长更新的方法,改为以误差的自相关时间均值估计调节步长,抑制了噪声干扰;然后使用HB加权进一步平滑了因噪声干扰导致的自适应滤波器权系数伪峰、使用归一化处理获得了更大的输入信号动态范围。自适应时延估计仿真实验表明,在高斯噪声和冲激噪声干扰下,相比于固定参数下的SVS-LMS算法和另外一种SVS-LMS改进算法,本文算法及其HB加权能够获得更好的时变时延跟踪均方误差性能。
中图分类号: